Search results for "LEADING ORDER"
showing 10 items of 18 documents
EPPS16: Nuclear parton distributions with LHC data
2017
We introduce a global analysis of collinearly factorized nuclear parton distribution functions (PDFs) including, for the first time, data constraints from LHC proton-lead collisions. In comparison to our previous analysis, EPS09, where data only from charged-lepton-nucleus deep inelastic scattering (DIS), Drell-Yan (DY) dilepton production in proton-nucleus collisions and inclusive pion production in deuteron-nucleus collisions were the input, we now increase the variety of data constraints to cover also neutrino-nucleus DIS and low-mass DY production in pion-nucleus collisions. The new LHC data significantly extend the kinematic reach of the data constraints. We now allow much more freedom…
Flavor physics in the quark sector
2010
218 páginas, 106 figuras, 89 tablas.-- arXiv:0907.5386v2.-- Report of the CKM workshop, Rome 9-13th Sep. 2008.-- et al.
Quark and gluon distributions and $\alpha_{s}$ from nucleon structure functions at low $x$
1993
Abstract The Q2 dependence of the structure functions F2p and F2d recently measured by the NMC is compared with the predictions of perturbative QCD at next-to-leading order. Good agreement is observed, leading to accurate determinations of the quark and gluon distributions in the range 0.008 ⩽ × ⩽ 0.5. The strong coupling constant is measured from the low x data; the result agrees with previous determinations.
BLM scale for the pion transition form factor
2001
The NLO Brodsky-Lepage-Mackenzie (BLM) scale for the pion transition form factor has been determined. To achieve that, a consistent calculation up to nf-proportional NNLO contributions to both the hard-scattering amplitude and the perturbatively calculable part of the pion distribution amplitude has been performed. By combining and matching the results obtained for these two amplitudes, a proper cancellation of collinear singularities has been established and the gamma5 ambiguity problem (related to the use of the dimensional regularization method) has been resolved by using the naive-gamma5 as well as the 't Hooft-Veltman (HV) schemes. It has been demonstrated that the prediction for the p…
High-energy evolution to three loops
2018
The Balitsky-Kovchegov equation describes the high-energy growth of gauge theory scattering amplitudes as well as nonlinear saturation effects which stop it. We obtain the three-loop corrections to this equation in planar $\mathcal{N}=4$ super Yang-Mills theory. Our method exploits a recently established equivalence with the physics of soft wide-angle radiation, so-called non-global logarithms, and thus yields at the same time the three-loop evolution equation for non-global logarithms. As a by-product of our analysis, we develop a Lorentz-covariant method to subtract infrared and collinear divergences in cross-section calculations in the planar limit. We compare our result in the linear re…
Features of W production in p-p, p-Pb and Pb-Pb collisions
2017
We consider the production of inclusive W bosons in variety of high-energy hadronic collisions: p--p, p--$\overline{\rm p}$, p--Pb, and Pb--Pb. In particular, we focus on the resulting distributions of charged leptons from W decay that can be measured with relatively low backgrounds. The leading-order expressions within the collinearly factorized QCD indicate that the center-of-mass energy dependence at forward/backward rapidities should be well approximated by a simple power law. The scaling exponent is related to the small-$x$ behaviour of the quark distributions, which is largely driven by the parton evolution. An interesting consequence is the simple scaling law for the lepton charge as…
DETERMINATION OF ALPHA-S FROM THE SCALING VIOLATION IN THE FRAGMENTATION FUNCTIONS IN E+E- ANNIHILATION
1993
A determination of the hadronic fragmentation functions of the Z0 boson is presented from a study of the inclusive hadron production with the DELPHI detector at LEP. These fragmentation functions were compared with the ones at lower energies, thus covering data in a large kinematic range: 196 less-than-or-equal-to Q2 less-than-or-equal-to 8312 GeV2 and x (= p(h)/E(beam)) > 0.08. A large scaling violation was observed, which was used to extract the strong coupling constant in second order QCD: alpha(s)(M(Z)) = 0.118 +/- 0.005. The corresponding QCD scale for five quark flavours is: LAMBDA(MS)(5)BAR = 230 +/- 60 MeV.
Including resummation in the NLO BK equation
2017
We include a resummation of large transverse momentum logarithms in the next-to-leading order (NLO) Balitsky-Kovchegov equation. The resummed evolution equation is shown to be stable, the evolution speed being significantly reduced by NLO corrections. The contributions from NLO terms that are not enhanced by large logarithms are found to be numerically important close to phenomenologically relevant initial conditions. We numerically determine the value for the constant in the resummed logarithm that includes a maximal part of the full NLO terms in the resummation.
Small-x, Diffraction and Vector Mesons
2015
This talk discusses recent progress in some topics relevant for deep inelastic scattering at small x. We discuss first differences and similarities between conventional collinear factorization and the dipole picture of deep inelastic scattering. Many of the recent theoretical advances at small x are related to taking calculations in the nonlinear saturation regime to next-to-leading order accuracy in the QCD coupling. On the experimental side significant recent progress has been made in exclusive and diffractive processes, in particular in ultraperipheral nucleus-nucleus collisions.
Next-to-leading order Balitsky-Kovchegov equation with resummation
2016
We solve the Balitsky-Kovchegov evolution equation at next-to-leading order accuracy including a resummation of large single and double transverse momentum logarithms to all orders. We numerically determine an optimal value for the constant under the large transverse momentum logarithm that enables including a maximal amount of the full NLO result in the resummation. When this value is used the contribution from the $\alpha_s^2$ terms without large logarithms is found to be small at large saturation scales and at small dipoles. Close to initial conditions relevant for phenomenological applications these fixed order corrections are shown to be numerically important.